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A two-degree-of-freedom airfoil with a freeplay non-linearity in the pitch and plunge
directions has been analyzed in the transonic and low-supersonic #ow region, where
aerodynamic non-linearities also exist. The primary purpose of this study is to show
aeroelastic characteristics due to freeplay structural non-linearity in the transonic and
low-supersonic regions. The unsteady aerodynamic forces on the airfoil were evaluated
using two-dimensional unsteady Euler code, and the resulting aeroelastic equations are
numerically integrated to obtain the aeroelastic time responses of the airfoil motions and to
investigate the dynamic instability. The present model has been considered as a simple
aeroelastic model, which is equivalent to the folding "n of an advanced generic missile. From
the results of the present study, characteristics of important vibration responses and
aeroelastic instabilities can be observed in the transonic and supersonic regions, especially
considering the e!ect of structural non-linearity in the pitch and plunge directions. The
regions of limit-cycle oscillation are shown at much lower velocities, especially in the
supersonic #ow region, than the divergent #utter velocities of the linear structure model. It is
also shown that even small freeplay angles can lead to severe dynamic instabilities and
dangerous fatigue conditions for the #ight vehicle wings and control "ns.

( 2000 Academic Press
1. INTRODUCTION

Structural non-linearities are subdivided into distributed non-linearities and concentrated
ones. Distributed non-linearities are spread over the entire structure-like material and
geometric non-linearity, but concentrated non-linearities have a local e!ect in a control
mechanism or an attachment of external stores. Most #ight vehicles may have inherently
concentrated structural non-linearities such as freeplay, friction, hysteresis and preload in
the hinge part of their control surfaces and folded sections, etc. Concentrated structural
non-linearities may be generated from a worn or loose hinge connection of control surface,
joint slippage, and manufacturing tolerance. Concentrated structural non-linearities are
generally known to cause signi"cant instabilities in the aeroelastic responses of
aero-surfaces. Among all these several non-linearities, the freeplay usually gives the most
critical #utter condition. The aeroelastic responses of the system with structural
non-linearity have the four categories: damped stable motion, limit-cycle oscillation (LCO),
chaotic motion and divergent #utter condition.

Flutter prevention technology in the transonic operating regime is an important problem
in #ight vehicle wing design and #ight safety. Flutter is a dynamic instability phenomenon
0022-460X/00/300859#22 $35.00/0 ( 2000 Academic Press
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resulting from interaction between an elastic structure and the #ow around the structure.
The large amplitudes and high frequencies associated with #utter phenomena can cause
catastrophic structural failure. Flight vehicle wings that operate in transonic #ow
experience increased susceptibility to #utter. It has been widely reported that the
#utter-onset speed gradually decreases with an increasing Mach number, reaching
a minimum in the transonic regime, followed by an upward rise in the supersonic regime
[1]. The minimum of this curve, or #utter boundary, is called the &&#utter dip''. Analysis of
the #utter dip is primarily of signi"cance to design engineers, since the transonic regime is
typically within the #ight envelope of these #ight vehicles. In the transonic speeds,
aerodynamic non-linearities become dominant due to the shock waves or the
shock-induced separations on the airfoil surface.

A two-degree-of-freedom airfoil system (typical section model) can give a lot of insights
and useful information about the physical aeroelastic phenomena. Many aeroelastic
analyses and investigations for the linear typical section model in the transonic #ow regime
have been widely performed using the technique of computational #uid dynamics (CFD)
since the mid-1970s [2}9]. However, most of the previous studies in the transonic region
have the assumption of structural linearity. Recently, in the case of considering the
structural non-linearity, many researchers have also conducted good work, although most
of them are restricted to the subsonic regions [10}15]. Hence, this paper purports to
observe the e!ects of aerodynamic non-linearity due to the strong shock motion in the
transonic and low-supersonic #ow regions. The main purpose of this article is to present
structural non-linearity e!ects on aeroelastic responses in the #ow region with aerodynamic
non-linearity by using the simultaneous time-integration method coupled with CFD code
of the Euler-based compressible aerodynamic theory. This paper also shows the combined
non-linear e!ects of pitch-plunge freeplay for a typical section model. The combined
Figure 1. Typical section model.



Figure 2. Non-linear plunge and pitch sti!ness.
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plunge-pitch freeplay can usually be seen in an advanced generic missile pin that could be
folded at its settled position. Actually, a multi-purpose military missile "n with folded
mechanism may have two-axial non-linearities at both the folding "n axis and pitch control
axis, as shown in Figure 1. In this paper, an equivalent typical section model with
two-degree-of-freedom motion and with freeplay non-linearity in both the plunge and pitch
directions, as shown in Figure 2, has been considered. The unsteady aerodynamic forces on
the airfoil were evaluated using the two-dimensional unsteady Euler code, and the resulting
aeroelastic equations are integrated numerically to give the aeroelastic time responses of the
airfoil motion and to show the dynamic instability. In this study, transonic limit-cycle
behaviors and #utter boundaries of a two-degree-of-freedom aeroelastic system were
calculated. The transonic and supersonic #utter analysis results in both the linear and
non-linear cases are compared to show the pitch-plunge freeplay e!ects on the #utter
boundary.

2. THEORETICAL ANALYSIS

2.1. NON-LINEAR AEROELASTIC MODEL

The aeroelastic model considered here is a two-degree-of-freedom system, free to rotate in
the x}y plane and free to translate in the vertical direction as shown in Figure 1 which also
shows the notation used for the analysis of the airfoil system oscillating in pitch and plunge.
The plunging de#ection is denoted by h, positive in the downward direction at the elastic
axis (EA); a is the pitch angle about the elastic axis, positive in the nose-up rotation. The
elastic axis is located at a distance ba from midchord, while the mass center is located at
a distance xab from the elastic axis. Both distances are positive when measured toward the
trailing edge of the airfoil. Note that the pitching axis may be o!set from the center of the
mass of the airfoil from the mid-chord, leading to a coupling between the pitching and
plunging degree of freedom. The airfoil is assumed to be constrained to move along the
vertical y-axis and to rotate about an elastic axis.

The well-known equations of motion for the typical section model in terms of the
co-ordinates h and a can be derived from Lagrange's equation [16]. For non-linear
restoring moment from springs with freeplay in the plunge and torsion degree of freedom
(Figure 2), the governing aeroelastic equations of motion can be written as

mhG#SaaK#g
h
hQ #F (h)"!¸(t), (1)

SahG#IaaK#gaa5 #G(a)"M(t), (2)
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where the dot represents di!erentiation with respect to time; h is the airfoil vertical
displacement at the elastic axis; Ia the airfoil moment of inertia (per unit span) about the
pitch axis; m and Sa are the mass and static moment per unit span, and g

h
and ga are the

structural damping coe$cients for the pitching and plunging motions respectively. F (h) and
G(a) are the non-linear functions representing the restoring force and moment respectively,
and ¸ and M are the applied external unsteady aerodynamic lift and moment respectively.
From Figure 2, F (h) and G(a) can be written as
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where K
h
and Ka are the plunge and torsional spring constants for the linear part as shown

in Figure 2 respectively, and h
s
and a

s
are the initial freeplay magnitudes of plunge and pitch

motions respectively.
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governing equations (1) and (2) can be normalized in the following matrix form:
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In the above equations, the prime denotes di!erentiation with respect to the
non-dimensional time q ("a

=
t/c). Equation (5) can be written as a system of the "rst order

ordinary di!erential equations. Let m0 (q)"g (q) and a5 (q)"b (q). After substituting these
equations into the structural equation (5), we can obtain the following equation of motion in
the state-space matrix form:

MyR (q)N"C
[0]

![M]~1[K]

[1]

![M]~1[C]DMy (q)N#C
[0]

[0]

[0]
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In the present study, a "fth order Runge}Kutta method is used to integrate numerically
the non-linear equation (10) forward in time. Since the inverse matrix of [M] can be
determined analytically, an exact symbolic form of the inverse matrix of [M] is applied.

2.2. NON-LINEAR AERODYNAMIC MODEL

The steady and unsteady #ow quantities are obtained from the two-dimensional
time-dependent Euler equations. For the unsteady aerodynamic or aeroelastic response
analyses, an arbitrary Lagrangean}Eulerian (ALE) formulation for the Euler equations is
used to calculated #ow #ux in the computational #ow "eld with moving boundaries. The
integral form of the two-dimensional Euler equations by ALE formulation can be written as

d

dt PX (t)

=dA#PLX (t)

(F dy!G dx)"0, (12)

where X is an element area with (moving) boundaries LX and the vector of conserved
variable= and the convective #uxes F and G are given by
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Here p, o, u, v and e are the pressure, the density, the Cartesian velocity components, and the
speci"c total energy respectively. xq and yq are the Cartesian velocity components of the
moving boundary LX. For a calorically perfect gas, the pressure is related to the total energy
by the equation of state

p"(c!1)Ge!o
u2#v2

2 H, (14)

where c is the ratio of speci"c heats.
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In the present method, all the #ow variables are normalized to keep the consistency for
the aeroelastic equation (5) that is previously normalized by structural parameters.
A "nite-volume spatial discretization method is used on a structure grid to solve
equation (1). The spatial derivatives are approximated by evaluating the net #ux across the
faces of each mesh cell using constant values of the velocities on each face. The dependent
variables are de"ned at the cell centers. This approximation is equivalent to a central
di!erence scheme that is second-order-accurate in the mesh spacing in the physical domain
when the mesh is smooth. The central-di!erence spatial discretization requires the arti"cial
dissipation to prevent numerical oscillations near the strong shock waves. In the present
study, a directionally scaled dissipation model has been used explicitly. This dissipation
model provides anisotropic dissipation to each direction, resulting in improved
performance on meshes with high aspect ratio cells.

The diagonalized alternating direction implicit (DADI) algorithm of Pulliam and
Chaussee [17] is used to obtain the time-integration solution. This integration method is
based on the diagonal form of the implicit approximate-factorization algorithm and is
known to be "rst-order-accurate in time and temporally non-conservative although being
conservative in space. Hence, the subiteration algorithm [18, 19] is used to increase the time
accuracy of the present unsteady calculations. For the far"eld boundary conditions,
a characteristic analysis based on Riemann invariants is used to determine the values of #ow
variables on the outer boundary of the grid. A normal momentum method is applied to
extrapolate necessary pressure from adjacent cell centers to the airfoil surface boundary.

On the #uid}structure interface, both a traction boundary condition and a kinematic
compatibility condition have to be satis"ed. The traction boundary condition represents the
#uid pressure acting on the structure. In the case of inviscid #uid #ow like in the present
study, the kinematic boundary condition provides for the compatibility of the normal
velocity across the #uid}structure interface. The grid topology for the current study is an
O-type grid. The grid size used for all runs, unless otherwise stated, consists of 129 points
de"ning the airfoil surface, 33 points normal to the surface and the far outer boundary is
located at 25 chord length. This grid system was e$ciently selected from a comparison of
numerical convergence tests for the various grid types. To regenerate the grid system for the
newly calculated airfoil position, the dynamic meshing algorithm based on the linear spring
network has been adopted from reference [20].

3. NUMERICAL RESULTS AND DISCUSSION

To verify the accuracy of the present Euler code, steady and unsteady aerodynamic
analyses are performed for a NACA 0012 airfoil section. The steady #ow result is obtained
at the free-stream Mach number of 0)8 and zero angle of attack. The results of steady
pressure distributions on the airfoil surface are shown in Figure 3. The present results show
very good agreement with the experimental data given in reference [21]. About 400}500
time steps were required for converged steady-state solutions, when spatially varying time
steps were used. Figure 4 shows the comparison of unsteady results when a NACA 0012
airfoil with the pitch axis located at the quarter-chord is under a rigid pitch motion. This
case has been previously studied by Venkatakrishnan and Jameson [22]. The results of the
present unsteady lift and moment coe$cients agree well with those of a previous
calculation. In this unsteady calculation, 500 time steps were used for a typical cycle of
oscillation.

To validate the present #utter analysis technique, a well-known typical section model is
selected. This case was chosen since it has been previously studied by Yang et al. [5]



Figure 3. Steady pressure comparison for the NACA 0012 airfoil (M"0)8, a
0
"0)03): s, experiment [21];**,

present Euler.

Figure 4. Unsteady lift and moment coe$cients comparison during the fourth cycles of pitching oscillation
(M"0)8, a

0
"0)03, a

m
"5)03, k"1)0). s, Euler [22]; **, present Euler (129]33).
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and also by Wu et al. [9]. Figure 5 shows the calculated #utter velocities for
a two-degree-of-freedom aeroelastic model with a NACA 64A006 airfoil. However, no
structural non-linearity such as freeplay was considered in this model. The related
structural parameters given in Table 1 are selected to be the same values as the case
presented in references [5, 9]. The airfoil}air mass ratio was varied to study the e!ect of
airfoil to air mass ratio on the #utter characteristics. It was found that variations in airfoil to
air mass ratio could lead to various dynamic characteristics such as damped oscillations,
neutral oscillations or divergent (#utter) oscillations. The present results also show good
agreements with previous analysis results by the UTRAN2 [5] and Euler [9] code.

To examine the e!ects of steady shock position on aeroelastic instability, steady pressure
contours about NACA 0012 airfoil for four di!erent Mach numbers are presented in
Figure 6. The corresponding distributions of steady pressure coe$cient at several Mach
numbers are also presented in Figure 7. We can see that the pressure rises abruptly when the
normal shock occurs on the mid-airfoil surface. It is noted here that there are severe changes



Figure 5. Flutter speed comparison for the various airfoil to air mass ratios (NACA 64A006 airfoil, M"0)85).
}} }, UTRANS2; **, LTRRN2; #, Euler [9]; s, present Euler.

TABLE 1

Structural properties for typical section models

Model Reference [9] KL KNA KNH KNAH

Airfoil section 64A006 0012 0012 0012 0012
a
h

!0)5 !0)25 !0)25 !0)25 !0)25
xa 0)25 0)25 0)25 0)25 0)25
ra 0)5 0)629 0)629 0)629 0)629
u6 0)2 0)708 0)708 0)708 0)708
k 50}300 36)15 36)15 36)15 36)15
a
s

f f 0)001745 f 0)001745
h
s
/c f f f 0)001 0)001
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in normal shock wave position on the airfoil surface between the Mach numbers of 0)8 and
0)9. These changes in shock positions are physically important to explain the transonic dip
mechanism. In particular, the di!erence in pressure center on either the upper or lower
surface due to the unsteady shock motion plays an important role in the large variation of
pitching moment for the airfoil motion. This becomes the main reason for the increase in
aeroelastic instability in the transonic #ow regime.

Figures 8 and 9 show the examples of free vibration responses of the present aeroelastic
system with or without structural non-linearity in its pitch and plunge degree of freedom.
The related structural properties are given in Table 1. The freeplay non-linear model (KNA)
presented in Table 1 is the same rigid model as studied in reference [15] and the only
di!erence is the airfoil shape. The #at plate airfoil section was assumed in reference [15], but
a NACA 0012 airfoil section has been selected in the present analysis. As can be expected,
the free vibration responses have nothing to do with the airfoil shape in this case, because no
aerodynamics is considered. For the linear structure model (KL) in Figure 8, the responses
seem to be simple harmonic, but the phase diagram of the pitch-plunge freeplay non-linear
model (KNAH) in Figure 9 shows banded multi-harmonic results for the same initial



Figure 6. Steady pressure contours for the NACA 0012 airfoil.

Figure 7. Steady pressure coe$cients for the NACA 0012 airfoil.

TRANSONIC AND LOW-SUPERSONIC AEROELASTIC ANALYSIS 867



Figure 8. Free vibration time history and phase plane diagram for KL model (;*"1)8, a@(0)"0)01,
m@(0)"0)01): (a) pitch and plunge response; **}, pitch; - - -, plunge; (b) pitch phase, (c) plunge phase.

Figure 9. Free vibration time history and phase plane diagram for KNAH model (;*"1)8, a@(0)"0)01,
m@(0)"0)01): (a) pitch and plunge response; **, pitch; - - -, plunge; (b) pitch phase, (c) plunge phase.
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conditions because of its non-linearity. But it is noted that the responses may vary greatly
with the changes of initial conditions in this case. To consider the initial condition e!ects
under the real #ow condition, classical transonic #utter analyses were performed for the
linear structure model. The #utter velocities and amplitudes of oscillation for the initial
condition variation are presented in Table 2. We can see that the #utter velocity is slightly
TABLE 2

Calculated -utter velocity and magnitude of K¸ model for the various initial conditions at
Mach 0)8

IC A1 A2 A3 H1 H2 H3 AH1 AH2 AH3

;M 2)13 2)13 2)13 2)15 2)14 2)14 2)15 2)14 2)14
DaD (rad) 0)00028 0)0028 0)027 0)00022 0)0022 0)022 0)00022 0)0022 0)022
Dh/cD 0.00036 0.0037 0.035 0.0003 0.003 0.029 0.0003 0.003 0.029

Note: [A1] a@(0)"0)001, [A2] a@ (0)"0)01, [A3] a@(0)"0)1; [H1] m@(0)"0)0001, [H2] m@(0)"0)001, [H3]
m@(0"0)01; [AH1]"[A1]#[H1], [AH2]"[A2]#[H2], [AH3]"[A3]#[H3].

Figure 10. The e!ect of plunge to torsion frequency ratio on the #utter velocity: (a) M"0)4; (b) M"0)8;**,
present Euler; #, DLM; *, present Euler (divergence); s, TSD2KR.
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changed for the various initial conditions, but the amplitudes are varied linearly up to
a certain velocity and converge for the larger initial disturbances. The types of dynamic
responses at #utter condition, although not presented in this paper, are very similar to those
of reference [9]. Actually, in the transonic #ow region, the limit-cycle phenomenon usually
shown in the responses of the non-linear structural model can also be observed in the linear
structural model, since there are aerodynamic non-linearities due to the interactions of
strong shock waves during the unsteady airfoil motion.

A comparison of #utter analysis results for the various natural frequency ratios is
presented in Figure 10. The doublet lattice method (DLM) [15], the TSD2KR
(two-dimensional version of reference [23]) and the present unsteady Euler codes were used
for this comparison. In the vicinity of the frequency ratio of 1)0, it is shown that the #utter
TABLE 3

¹he parameter map of KNA model for the various initial velocities

Dynamic response

(a) M"0)8
2)5 F F F F F F F
2)4 F F F F F F F
2)3 F F F F F F F
2)2 F F F F C F F
2)1 F F F L L F L
2)0 f L L L L L L
1)9 f L L L f L L
1)8 f L L L f L L
1)7 f f L L f L L
1)6 f f f f f f f

1)5 f f f f f f f

[A1] [A2] [A3] [H1] [H2] [H3]

Linear
Non-linear (KNA model)

(b) M"1)2
3)6 F F F F F F F
3)5 F L L L L L L
3)4 f L L L L L L
3)3 f L L L L L L
3)2 f L L L L L L
3)0 f L L L L L L
2)8 f L L L L L L
2)6 f L L L L L L
2)4 f L L L L L L
2)3 f L L L L L L
2)2 f L L L L L L
2)1 f L L L L L L
2)0 f f L L L L L
1)9 f f L L f L L
1)8 f f f f f f f

[A1] [A2] [A3] [H1] [H2] [H3]

Linear
Non-linear (KNA model)

Note: F, divergent #utter; L, limit-cycle oscillation; C, Chaotic motion; f, convergent stable motion.
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velocity tends to be minimal, as expected from classical aeroelastic phenomena. Since the
doublet lattice technique was used in reference [15], the airfoil was assumed to be a #at
plate in the previous results. The results of the di!erent aerodynamic methods are very
similar at Mach 0)4, as shown in Figure 10(a), because of the aerodynamic linearity in the
subsonic #ow region. But, it is noted that there are large di!erences in the #utter velocities
at Mach 0)8. As mentioned before, there are strong shock wave interactions in the transonic
#ow regime, so that the linear aerodynamic theory like the doublet lattice technique cannot
predict the correct #utter boundary. The reason for showing di!erent #utter velocities at
a high frequency ratio is that the weak torsion sti!ness gives a large pitching amplitude,
which causes a stronger shock motion. The results using the TSD code are very similar to
those of the present Euler code since the TSD code can also consider the aerodynamic
non-linearity.

The main purpose of this article is to investigate the structural non-linear e!ects on the
aeroelastic responses in the transonic and low-supersonic #ow regions, by using the
simultaneous integration method directly coupled with CFD code of the Euler-based
TABLE 4

¹he parameter map of KNH model for the various initial velocities

;M Dynamic response

(a) M"0)8
2)5 F F F F f F F
2)4 F F F F f F F
2)3 F F F F f F F
2)2 F f F F f F F
2)1 F f F L f L L
2)0 f f f f f f f

1)9 f f f f f f f

1)8 f f f f f f f

1)7 f f f f f f f

1)6 f f f f f f f

1)5 f f f f f f f

[A1] [A2] [A3] [H1] [H2] [H3]

Linear
Non-linear (KNA model)

(b) M"1)2
3)6 F f F F f F F
3)5 F f L L f L L
3)4 f f L L f L L
3)3 f f L L f L L
3)2 f f L L f L L
3)1 f f L L f L L
3)0 f f f f f L L
2)9 f f f f f f L
2)8 f f f f f f f

2)6 f f f f f f f

2)5 f f f f f f f

2)4 f f f f f f f

[A1] [A2] [A3] [H1] [H2] [H3]

Linear
Non-linear (KNH model)
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non-linear aerodynamic theory. As long as separation does not occur in the #ow, the Euler
equations provide a reasonable aerodynamic model for transonic #utter calculations,
including the modelling of aerodynamic non-linearities that can result in limit-cycle
behavior. In the present study, three types of freeplay non-linearities have been considered.
The related structural properties of all models are given in Table 1. The time-domain
analysis was carried out for the variation of initial disturbance and the reduced free-stream
velocity. The results of the present analyses at Mach 0)8 and 1)2 are presented in the
parameter map as shown in Tables 3 and 4. Detailed time responses are generally classi"ed
into four categories: damped stable motion, limit-cycle oscillation (LCO), chaotic motion
and divergent #utter. The aeroelastic characteristics of the non-linear structural models
tend to be less a!ected by the initial disturbed velocities like the cases of linear structure.
The calculated divergent #utter speed is almost the same as that of the linear structure given
in Table 2.
Figure 11. Non-linear aeroelastic responses for the KNA model (M"0)8, m@(0)"0)0001): (a), (b) ;*"1)9;
(c), (d) ;*"2)0; (e), (f ) ;*"2)2; (g), (h) ;*"2)3; **, pitching motion; } } } plunging motion.
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The examples of detailed time history and phase diagrams for the pitch and plunge
motions at the elastic axis are shown in Figures 11}14. These responses include the
limit-cycle oscillations and chaotic motions. Figures 11 and 12 are the aeroelastic responses
of KNA model for the variation of reduced velocity with the two di!erent initial conditions.
In Figure 11, a converged response is obtained at ;*"1)9 and divergent #utter at
;*"2)3. But there are limit-cycle oscillations at;*"2)0 and chaotic motion at;*"2)2
because of the e!ect of combined aero-structural non-linearity. Chaotic motions as shown
in Figures 11(e) and 11(f ) cannot be seen in the usual transonic responses of a linear
structure model. Figure 12 shows the responses for the di!erent initial conditions of plunge
direction (m@(0)"0)001) at the same Mach number. Unlike the previous results in Figure 11,
it shows that the limit-cycle oscillations are dominant. These trends of di!erent responses
indicate the typical dependency of the initial condition for a non-linear system. For the
Figure 12. Non-linear aeroelastic responses for the KNA model (M"0)8, m@(0)"0)001): (a), (b) ;*"1)6;
(c), (d) ;*"1)7; (e), (f ) ;*"1)9; (g), (h) ;*"2)1; **, pitching motion; } } } plunging motion.



Figure 13. Non-linear aeroelastic responses for the KNH model (M"1)2, m@ (0)"0)0001): (a), (b) ;*"2)9;
(c), (d) ;*"3)0; (e), (f ) ;*"3)1; (g), (h) ;*"3)3; **, pitching motion; } } } plunging motion.
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structural linear case with the same condition, there are only converged responses
regardless of the initial conditions. Time-domain analyses were carried out for the various
initial disturbances and free-stream velocities. The detailed results at Mach numbers of 0)8
and 1)2 are represented in the parameter map as shown in Table 3. Time responses are
classi"ed into four categories: damped stable motion (f), limit-cycle oscillation (L), chaotic
motion (C) and divergent #utter (F).

Four sampled responses of the KNH model at Mach 1)2 are given in Figure 13. We can
also see the converged response at low velocity and the limit-cycle oscillations under the
#utter velocity of the linear structure model. Chaotic motions have not been observed in
this case. Although freeplay non-linearity exists in the plunge direction, it is shown that the
pitch amplitude of limit cycle oscillation is larger than the plunge amplitude. Time-domain
analyses were carried out for the various initial disturbances and free-stream velocities. The
detailed results at Mach 0)8 and 1)2 are also represented in the parameter map as shown in



Figure 14. Non-linear aeroelastic responses for the KNAH model (M"0)8, m@(0)"0)0001): (a), (b) ;*"1)5;
(c), (d) ;*"1)7; (e), (f ) ;*"2)1; (g), (h) ;*"2)3; **, pitching motion; } } } plunging motion.
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Table 4. For the combined freeplay case of the KNAH model, four sampled responses are
presented in Figure 14. The complex chaotic motions are shown at;*"1)5, but it is noted
that the magnitudes of these unstable chaotic responses are very small. Therefore, these
results indicate that those vibration e!ects will not be severe for the aspect of structural
dynamic instability.

Figure 15 shows the #utter boundary comparison between linear and non-linear
structure models. A lot of computation work has been conducted to obtain the results, and
corresponding parametric maps were constructed to "nd the minimum velocities, such as
Tables 3 and 4. In these "gures, the solid line indicates the #utter boundary of the linear
model (KL) which has no freeplay in any direction. Figure 15(a) shows the #utter boundary
of the KNA model with a freeplay in the pitch direction only. It is very important that there
is a wide range of LCO region under the #utter boundary of the linear structural model.
Therefore, in the above case, a structure can easily become dynamically unstable and
constitute very dangerous conditions for fatigue failure. From this physical aspect, it can be



Figure 15. Flutter boundary comparison between linear and non-linear structural models: (a) pitch freeplay
model, a

s
"0)13; (b) plunge freeplay model (m

s
"0)001); (c) pitch-plunge freeplay model (a

s
"0)13, m

s
"0)001); s,

divergent #utter boundary; #, minimum LCO boundary, *, small-amplitude LCO boundary.
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suggested that if the freeplay exists in one direction, the apparent sti!ness of the system
tends to become weak in that direction as the initial freeplay angle is increased. This seems
to be the main reason for the existence of limit-cycle oscillations and chaotic behaviors at
much lower velocities and these trends can also be observed in Table 5. Figure 15(b) shows
the result of the KNH model with freeplay in the plunge direction only. The calculated
#utter boundary is nearly the same as that of the linear structure, in this case, under about
Mach 0)9. However, there is also a small LCO region from Mach 0)9 to 1)5. The existence of
this LCO region can be explained as follows: since the dynamic pressures are lower in the
sub-transonic region than in the super-transonic region, the weakness e!ect of equivalent
plunge sti!ness seems not be dominant because there is not enough amplitude of oscillation
to constitute the global dynamic instability. But, in the high-velocity region, the plunge
oscillation magnitude and velocity can be increased as amounts of increased dynamic
pressure. This causes the increases of relative angle of attack as well. Thus, in this condition,
the structure may obtain enough kinetic energy to generate and to keep the self-excited
oscillation. The examples of detailed responses of the KNH model are presented in Figure
12 at Mach 1)2. From the results, we can see that the freeplay e!ect on the LCO becomes
large in the high-speed region as shown in Figures 15(a) and 15(b). The pitch freeplay shows
a more dominant in#uence on aeroelastic instability than the plunge freeplay. Finally,
Figure 15(c) shows the result of the KNAH model with the freeplay in both the pitch and the
plunge directions. We can also see the wide range of LCO and chaotic region under the
calculated #utter boundary of the linear structure model. The type of minimum LCO



TABLE 5

¹he parameter map of KNA model for the various initial velocities and pitch freeplay angles

;M Dynamic response (M"0)8)

(a) a
s
"0)1@
2)5 F F F F F F F
2)4 F F F F F F F
2)3 F F F F F F F
2)2 F F F F F F F
2)1 F F F F F F F
2)0 f L (0)018) L(0)018) L(0)018) L(0)020) L(0)020) L(0)020)
1)9 f L(0)012) L(0)012) L(0)012) L(0)012) L(0)012) L(0)012)
1)8 f L(0)008) L(0)008) L(0)008) L(0)008) L(0)008) L(0)008)
1)7 f f f L(0)006) L(0)006) L(0)006) L(0)006)
1)6 f f f f f f f

1)5 f f f f f f f

0)001 0)005 0)01 0)001 0)005 0)01

a@(0) m@(0)

Linear
Non-linear (KNA model)

(b) a
s
"0)53
2)5 F F F F F F F
2)4 F F F F F F F
2)3 F F F F F F F
2)2 F L(0)006) L(0)200) L(0)200) L(0)200) L(0)200) L(0)200)
2)1 F L(0)005) L(0)130) L(0)130) L(0)001) L(0)130) L(0)130)
2)0 f f L(0)080) L(0)080) f L(0)080) L(0)080)
1)9 f f L(0)054) L(0)054) f L(0)054) L(0)054)
1)8 f f L(0)040) L(0)040) f L(0)040) L(0)040)
1)7 f f f L(0)028) f L(0)028) L(0)028)
1)6 f f f f f f f

1)5 f f f f f f f

0)001 0)005 0)01 0)001 0)005 0)01

a@(0) m@(0)

Linear
Non-linear (KNA model)

(c) a
s
"1.03
2)5 F F F F F F F
2)4 F C(0)016) F F C(0)016) F F
2)3 F L(0)012) F F C(0)016) F F
2)2 F L(0)010) L(0)25) L(0)25) L(0)010) L(0)25) L(0)25)
2)1 F L(0)008) L(0)19) L(0)19) L(0)008) L(0)19) L(0)19)
2)0 f L(0)006) L(0)14) L(0)14) L(0)006) L(0)14) L(0)14)
1)9 f f f L(0)10) f L(0)10) L(0)10)
1)8 f f f L(0)07) f L(0)07) L(0)07)
1)7 f f f f f f L(0)05)
1)6 f f f f f f f

1)5 f f f f f f f

0)001 0)005 0)01 0)001 0)005 0)01

a@(0) m@(0)

Linear
Non-linear (KNA model)

Note: ( ), oscillation pitch amplitude, rad.
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boundary presented by a dotted line is very similar to that of the pitch freeplay case as
shown in Figure 15(a). From these results, we can also conclude that the pitch freeplay
produces dominant dynamic instability and there are no more critical instabilities due to
the co-existence of the pitch and the plunge freeplay.

4. CONCLUSIONS

Transonic and low-supersonic #utter analyses of a two-degree-of-freedom system with
freeplay non-linearities have been studied. The analytical model discussed in this paper is
based on the simpli"ed equivalent model of an actual folding "n of a generic missile.
Unsteady aerodynamic forces on the airfoil were evaluated using the two-dimensional
unsteady Euler code and the resulting aeroelastic equations are numerically integrated to
obtain the detailed aeroelastic time responses of the airfoil motion. From the results of the
present study, characteristics of several vibration responses and aeroelastic instabilities can
be observed in the transonic and low-supersonic regions considering the e!ect of freeplay
non-linearity in the pitch and the plunge directions. The results for both structurally linear
and non-linear cases are compared to show the e!ects on #utter boundary. The detailed
aeroelastic responses of limit-cycle oscillations are also presented to show the vibration
characteristics. The regions of limit-cycle oscillation are shown more at the much lower
velocities, especially in the supersonic #ow region, than the divergent #utter velocities of the
linear structure model. It is also shown that even small freeplay angles can lead to severe
dynamic instabilities and dangerous fatigue conditions for the #ight vehicle wings or
control "ns. The initial condition e!ects on the amplitudes of limit-cycle oscillation are also
investigated at several Mach numbers for the various reduced velocities. The present study
contributes to a better understanding of the important e!ects of structural non-linearity in
the transonic and low-supersonic #ow regimes.
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APPENDIX A: LIST OF SYMBOLS

a speed of sound
a
h

non-dimensional distance between mid-chord and section elastic axis
b airfoil semi-chord
c airfoil chord ("2b)
c
l

lift coe$cient per unit span
c
m

moment coe$cient per unit span
h plunge displacement at the elastic axis, positive down
Ia cross-section mass moment of inertia about its elastic axis, per unit span (":

c
x2o

s
dx)

k reduced frequency ("uc/;
=
)

K
h

spring sti!ness in plunge direction
Ka spring sti!ness in pitch direction
m airfoil mass per unit span
M Mach number
ra non-dimensional radius of gyration about elastic axis (EA)
Sa static moment per unit span ("mx

cg
":

c
xo

s
dx)

t physical time
xa non-dimensional static imbalance of the airfoil about its elastic axis; CG-EA o!set
u, v velocities in the x, y directions
;* reduced velocity (";

=
/bu)

; free-stream velocity
a angle of attack; also torsion de#ection
k airfoil-to-air mass ratio ("m/nob2)
m non-dimensional plunge displacement at elastic axis ("h/c)
o air density
o
s

airfoil structural density
u circular frequency, rad/s
ua uncoupled frequency in torsion
u

h
uncoupled frequency in bending

u6 non-dimensional frequency ratio ("u
h
/ua)q non-dimensional time ("ta

=
/c)
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Subscripts
0 initial condition
R condition at upstream in"nity

Superscripts

( )@ "d( )/dq, di!erentiation with respect to the non-dimensional time q
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